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Abstract 
 

Excessive use of pesticides has caused agricultural and environmental hazards. Microbial inoculation is an alternate to 

pesticides for confronting pathogens and is an environmental friendly approach. In this study, potential of fungal endophytes 

to control leaf rust in wheat (Triticum aestivum L.) was evaluated. In vitro efficacy of the fungal endophytes isolated from 

different desert plants was evaluated and the best four namely Piriformospora indica, Trichoderma viride, Acremonium lolii 

and Colletotrichum lindemuthianum were selected. Seeds of two rust susceptible wheat genotypes namely Faisalabad-85 and 

Aas-02 were inoculated by dipping in four endophytic spore suspensions and were sown using randomized complete block 

design under factorial arrangement. Data regarding final disease severity percentage, area under disease progress curve and 

coefficient of infection were recorded. Results showed that endophytic inoculated susceptible wheat genotypes exhibited the 

tolerance against the Puccinia recondita. The endophyte P. indica showed significant decrease in final disease severity and 

area under disease progress curve, resulting in 17.5% increase in grain yield gain in Faisalabad-85 and Aas-02 followed by the 

endophytes T. viride, A. lolii and C. lindemuthianum with the grain yield gain of 13.7, 08.2 and 07.1%, respectively. The 

present study concludes that fungal endophytes are valuable microbes which can be exploited to develop tolerance against P. 

recondita for better and sustainable wheat production. © 2019 Friends Science Publishers 
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Introduction 

 

Wheat serves as staple food for over 1 billion people 

worldwide. Wheat yield is badly affected by many biotic 

and abiotic factors (Jellis, 2009). Reduced yield imposes 

food security challenges as a result of increasing demands 

for wheat consumption from the same land or even 

decreasing area to feed the ever increasing population of the 

world (Anonymous, 2016-17). Rust diseases cause heavy 

qualitative and quantitative losses in wheat produce (Cao et 

al., 2017). Resistant wheat varieties are compromised by the 

continuously evolving races of rust pathogens (Falk et al., 

2006). Puccinia recondite f. spp. tritici causes leaf rust of 

wheat and appears to be the most damaging pathogen that 

threatens global food security by inducing yield reductions 

in wheat (Hovmøller et al., 2011). Diseased symptoms are 

prevalent on leaf blades, leaf sheaths and glumes along with 

decreased number of grains per spike and grains weight 

(Huerta-Espino et al., 2011). Pathogenic attack in the early 

crop stages may result in increased yield losses up to 30% 

(Kolmer et al., 2005). Yield losses may reach up to 70% due 

to susceptible genotypes, early infections, high inoculum 

density and accelerated multiplication of pathogen (Chen, 

2005). 

To minimize the yield losses in wheat caused by 

different pathogens and abiotic stresses, there is need to find 

sustainable and environment friendly approaches to 

minimize the use of pesticides in cereals. Among the other 

approaches, control of pathogens through biological means 

with the use of endophytes is a cost effective and 

environment safe approach. Endophytes are metabolically 

active microbes (fungi, bacteria or virus) that colonize 

healthy plant tissue intra and intercellular without causing 

any apparent disease symptoms (Reinhold-Hurek and 

Hurek, 2011; Hardoim et al., 2015). The beneficial effects 

of endophytes on plants against diseases have increased the 

interest of researchers and farmers for enhancing 

agricultural production. Endophytes induce defence 

mechanisms in host plants against pathogen attack by 

producing bioactive organic compounds, secondary and 

antimicrobial metabolites that resist pathogens (Redman et 

al., 2011; Ambrose and Belanger, 2012; Gond et al., 2015). 

Endophytes also play role in their hosts for better 

adaptability and systemic resistance, augmenting nutrient 

uptake, stress tolerance and pathogenic tolerance or 

resistance (Hamilton et al., 2010; Kavamura et al., 2013). 
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There is little information available on the fungal 

endophytes potential regarding confronting pathogen and 

developing disease tolerance in wheat. The present study 

aimed at evaluating the potential of fungal endophytes to 

confront the leaf rust pathogen P. recondita by inducing 

tolerance in wheat. This study was designed to isolate a 

variety of fungal endophytes from desert plants and their 

antagonistic capacities were assessed by applying efficient 

of them to susceptible wheat genotypes in artificially 

inoculated diseased conditions. 

 

Materials and Methods 
 

Experimental Site and Sowing Conditions 

 

Fifty local wheat genotypes were sown by hand drill for 

screening against leaf rust in research area of Department of 

Plant Pathology, University of Agriculture Faisalabad 

during 1
st
 week of December, 2014. Each genotype was 

planted in plot size of 1.2 m × 2.5 m and the experimental 

plots were surrounded by planting three rows of highly 

susceptible genotype Morocco. Inoculation was done 

artificially by means of various methods like dusting with 

talcum powder, rubbing, spraying with distilled water and 

needle injection methods on Morocco twice in a week at 

tillering and heading stage for the development of a heavy 

rust infection pressure (Hussain et al., 2015).  

 

Data Recording of Leaf Rust 

 

Disease severity of leaf rust in percentage and host 

response was recorded by modified Cobb’s scale 

described by Peterson et al. (1948). Disease severity was 

recorded four times with 10 days interval when Morocco 

showed 40-50% rust severity. Rating of the final disease 

severity (FDS) was when Morocco showed 90-100% 

disease severity. The values of coefficient of infection 

(CI) were calculated by the equation described by Pathan 

and Park (2006). Area under disease progress curve 

(AUDPC) was estimated for each genotype by Pandey et 

al. (1989). 
 

AUDPC = d [1/2 (y1 + yk) + (y2 + y3 + - - - - - + yk-1)] 
 

Where, d= days between two consecutive records (time 

intervals). 
 

y1 + yk = Sum of the first and last disease records 
 

y2 + y3 + - - - - - + yk-1=Sum of all in between disease scores. 

 

Isolation of Fungal Endophytes 

 

Samples of naturally occurring healthy leaves, roots and 

stems were randomly taken from the desert plants from 3 

to 5 plants per site from various locations of Cholistan, 

Thar and Rohi Deserts. Samples were shifted to the lab 

through ice bucket, stored in refrigerator and were used 

for isolation of endophytes within 72 h. Samples were 

sterilized in 1% (v/v) sodium hypochlorite solution and 

with distilled water for 3 times. By means of aseptic 

technique, 2-3 cm pieces placed on 10% PDA in Petri 

plates and incubated at 28°C for 6-8 days to let the 

emergence of endophytic fungi. Pure culture was obtained 

by the sub culturing of isolated fungi. Fungal 

identification methods were based on the morphological 

characteristics of their colonies (Najjar, 2007). The shape 

and size of conidia and phailides were calculated and also 

compared the micro and macro morphological features to 

the identification key (Hanlin, 1990; Barnett and Hunter, 

1998; Pitt and Hocking, 2009). 

 

Optimization of Efficient and Compatible Fungal 

Endophytes 

 

Spores of many endophytic fungi were harvested in distilled 

water by rubbing the surface of a sporulating pure culture 

with a sterile bent glass rod and maintained the spore 

suspension of 1×10
6 

mL by dilution method. Germinating 

wheat seed were kept in test tubes containing 0.3% agar 

concentration in distilled water with fungal spore suspension 

of 1×10
6
 mL and were incubated. After suitable intervals, 

root and shoot length of wheat seedlings were measured for 

investigating the efficacy of fungal endophytes. 

Consequently four best endophytes were selected for further 

experimentation. 

 

In-Vivo Potential of Fungal Endophytes 

 

Seeds of two selected leaf rust susceptible genotypes of 

wheat were soaked separately for 24 h in spore suspensions 

of four selected (from lab experiments) efficient and 

compatible endophytes. During last week of November, 

2015, these seeds were sown under randomized complete 

block design through factorial arrangement repeated thrice 

and untreated as control. Inoculation was done artificially as 

performed in screening experiment. The FDS (%), AUDPC 

value, 1000-grain weight (g), Grain yield (g
-2

) and yield 

increased (%) were measured for assessing the potential 

of fungal endophytes against leaf rust pathogen P. 

recondita as well as their symbiotic response for rust 

susceptible genotypes in disease vulnerable conditions. 

The endophytes were re-isolated and identified from the 

inoculated plants to confirm the colonization of the fungal 

endophytes in plant tissues. 

 

Statistical Analysis 

 

Data were analysed using analysis of variance (ANOVA) 

and Dunkun’s New Multiple Range Test (DNMRT), 

Tukey’s test at 5% probability level in screening experiment 

and Least Significant Difference (LSD) test for other 

experiment (Steel et al., 1997). 
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Results 

 

Leaf Rust Susceptibility of Wheat Genotypes 

 

The final disease severity of wheat leaf rust on 50 local 

wheat genotypes ranged from 30-80% (Table 1). The 

genotypes of Punjab-11, Faisalabad-85 and Aas-02 showed 

the highest final disease severity of 80% followed by Sehar-

06 and Wafaq-01 (Table 1). In the same way, the highest 

values of area under disease progress curve (AUDPC) and 

coefficient of infection (CI) were recorded in genotypes of 

Punjab-11 (1600, 76.0), Aas-02 (1550, 77.6), Faisalabad-85 

(1350, 77.6) and Sehar-06 (1300, 63.6) respectively and 

were designated as susceptible (Table 1), whereas Shafaq-

06, Kohistan-97 and Gomal-08 depicted the coefficient of 

infection (CI) values of 12.0,14.6 and 14.6 and also the 

minimum area under disease progress curve (AUDPC) 

value of 300, thus, were resistant to the pathogen of the leaf 

rust (Puccinia recondita). The rest of the genotypes had the 

range of values from 450 to 850 were ranked as moderately 

resistant to susceptible. 

 

Changes in Disease Tolerance with Fungal Endophytes 

 

From a variety of endophytes, the four endophytes namely 

Piriformospora indica, Colletotrichum lindemuthianum, 

Trichoderma viride and Acremonium lolii were selected as 

efficient for antagonistic role against pathogens which were 

derived from in-vitro evaluation. The effect of these 

endophytes on leaf rust susceptible genotypes Faisalabad-85 

and Aas-02 in artificially provided disease conditions during 

2015-16. These susceptible genotypes showed significant 

results with fungal endophytes. 

Endophytes application at sowing time enhanced 

1000-grains weight and grain yield by reducing the final 

disease severity (FDS) and area under disease progress 

curve (AUDPC) values of rust susceptible wheat genotypes 

Faisalabad-85 and Aas-02 under disease conditions as 

compare to control. Fungal endophytes effectively reduced 

disease severity as 45% FDS was observed in P. indica and 

T. viride followed by A. lolii (55%) and C. lindemuthianum 

(60%), respectively (Table 2). Among the tested wheat 

genotypes, Aas-02 showed least final disease severity 

(FDS) (56%) than that of Faisalabad-85 (58%) (Table 

2). In the same manner minimum area under disease 

progress curve (AUDPC) value (525.0) was observed in P. 

indica followed by T. viride (738.3), A. lolii (875.0) and C. 

lindemuthianum (908.3), compared with control (no 

endophyte application) to the leaf rust susceptible genotypes 

(Table 2). 

Symbiotic effects of fungal endophytes with 

susceptible genotypes and antagonistic effect for leaf rust 

fungal pathogen P. recondita were contributed significantly 

for stabilizing wheat plant against leaf rust through 

confronting the disease attack by decreasing disease severity 

resultantly improved thousand grain weight and greater 

grain yield (Table 2). P. indica showed significant 

performance by enhancing 17.5% final grain yield 

comparing to control followed by T. viride 13.7%, A. lolii 

8.2% and C. lindemuthianum 7.1% in leaf rust conditions. 

Both grain weight and yield were effectively increased by 

the association of P. indica and T. viride while the A. lolii 

and C. lindemuthianum showed moderate performances in 

causing tolerance against leaf rust pathogen. 

 

Discussion 

 

Although some of the reports confirm wheat growth 

enhancement by the exogenous use of P. indica and 

validated that its inoculation augmented the defence 

mechanisms in wheat, conferred disease tolerance and 

increased wheat yield and productivity (Shahabivand et al., 

2012; Yaghoubian et al., 2014), but none is available in 

previous studies where P. indica and other fungal 

endophytes confronted wheat leaf rust. In this study, use of 

fungal endophytes improved the wheat growth and grain 

yield in disease conditions. Fungal endophytes application 

proved highly effective in enhancing the yield of susceptible 

genotypes (Faisalabad-85 and Aas-02). P. indica showed 

best beneficial results followed by T. viride, A. lolii and C. 

lindemuthianum for inducing tolerance against P. recondita. 

Results of this study confirmed better grains weight and 

yield linked predominantly to the reduced disease severity 

of the fungal endophytes inoculated wheat plants. Increased 

photosynthetic area and net assimilation efficiency of plant 

implied the prime antagonistic role of fungal endophytes. 

Reduced disease severity reasons of greater surface area for 

producing and partitioning of photoassimilates towards 

reproductive growth resultantly improved grains weight and 

yield. 

The antagonistic role of fungal endophytes against leaf 

rust pathogen P. recondita contributed appreciably for 

alleviating susceptible wheat plant under disease conditions 

through inducing disease tolerance. Likewise, Rodriguez et 

al. (2009) and Suryanarayanan et al. (2009) reported 

antagonistic effects of C. lindemuthianum in tomato plants 

with improved disease tolerance and enhanced growth and 

biomass as observe in this study. Many studies reported the 

antagonistic effects of T. viride as well as other 

Trichoderma spp. for conferring beneficial effects to host 

plants and managing different diseases (Mastouri et al., 

2010; Montero-Barrientos et al., 2010; Shoresh et al., 2010). 

According to Rabiey and Shaw (2016) application of 

P. indica reduced 70% disease severity of Fusarium head 

blight, increased 1000-grains weight and grain yield in 

wheat. The average increase of 1000-grains weight and 

grain yield were reported 24.2 and 17.3%. In another study, 

use of P. indica at sowing time reduced the disease 

severities of yellow rust, powdery mildew and septoria leaf 

blotch by 29, 63 and 65%, respectively. Consequently, it 

also increased wheat grain yield by 25, 48 and 27%, 
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respectively (Rabiey, 2015). Thus, considering alternative of 

chemical pesticides, use of fungal endophytes is beneficial 

in achieving better and sustainable wheat yield from leaf 

rust vulnerable areas. 

 

Conclusion 

 

Fungal endophytes can protect wheat from damage caused 

by P. recondita by reducing the disease severity and 

consequently enhance the grain yield under field conditions. 

The findings of this study suggested that P. indica, T. viride, 

C. lindemuthianum and A. lolii inoculation could induce 

tolerance against leaf rust in wheat plants. 
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